Targeted next-generation sequencing (NGS) for Detecting MLL Gene Fusions in Leukemia

Mixed lineage leukemia (MLL) gene rearrangements characterize approximately 70% of infant and 10% of adult and therapy-related leukemia. Conventional clinical diagnostics, including cytogenetics and fluorescence in situ hybridization (FISH) fail to detect MLL translocation partner genes (TPG) in many patients. Long-distance inverse (LDI)-PCR, the “gold standard” technique that is used to characterize MLL breakpoints, is laborious and requires a large input of genomic DNA (gDNA). To overcome the limitations of current techniques, a targeted next-generation sequencing (NGS) approach that requires low RNA input was tested. Anchored multiplex PCR-based enrichment (AMP-E) was used to rapidly identify a broad range of MLL fusions in patient specimens. Libraries generated using Archer® FusionPlex® Heme and Myeloid panels were sequenced using the Illumina® platform. Diagnostic specimens (n = 39) from pediatric leukemia patients were tested with AMP-E and validated by LDI-PCR. In concordance with LDI-PCR, the AMP-E method successfully identified TPGs without prior knowledge. AMP-E identified 10 different MLL fusions in the 39 samples. Only two specimens were discordant; AMP-E successfully identified a MLL-MLLT1 fusion where LDI-PCR had failed to determine the breakpoint, whereas a MLL-MLLT3 fusion was not detected by AMP-E due to low expression of the fusion transcript. Sensitivity tests demonstrated that AMP-E can detect MLL-AFF1 in MV4-11 cell dilutions of 10−7 and transcripts down to 0.005 copies/ng.

This website stores cookies on your computer. These cookies are used to improve your website and provide more personalized services to you, both on this website and through other media. To find out more about the cookies we use, see our Privacy Policy.

We won’t track your information when you visit our site. But in order to comply with your preferences, we’ll have to use just one tiny cookie so that you’re not asked to make this choice again.